Одна из основных переменных, влияющих на успех в онлайне, это коэффициент конверсии в покупку или обращение через сайт. Даже небольшое повышение конверсии сайта может дать заметный прирост прибыли, поэтому мы всегда стремимся ее повышать.
Факторы, на которые мы можем быстро влиять в борьбе за повышение конверсии:
По пунктам выше все примерно понятно. Тестируем разные варианты страниц и сегменты трафика — эффективные связки берем в работу. Но есть и внешние факторы, повлиять на которые напрямую невозможно, или очень долго:
В данном кейсе рассмотрим 2 последних пункта
В рамках работы с одним из федеральных e-commerce проектов мы обратили внимание на сильные отличия коэффициента конверсии и среднего чека в разных регионах. При этом структура кампаний, посадочные страницы, ассортимент и цены совпадали, явной конкуренции со стороны местных игроков мы тоже не увидели.
Хорошими результатами выделялись Москва и некоторые регионы, связанные с добычей полезных ископаемых. В остальных регионах конверсия и средний чек были ниже — конверсия из-за того что дорого, а если и покупали, то с низким чеком.
Также мы предположили, что показатели были лучше в регионах, где бренд более известен. Чтобы подтвердить эти гипотезы, мы решили провести исследование.
У нас были данные по конверсии и среднему чеку в разрезе регионов за длительный период, необходимо было определить, как связаны с этими показателями популярность бренда и уровень жизни в регионах.
Для измерения известности бренда ввели показатель «индекс популярности бренда», который для каждого региона рассчитывался следующим образом: ИПБ = брендовый запрос/маркерный запрос.
В качестве Метрики, характеризующей уровень жизни, мы приняли среднюю заработную плату за 2019 год по данным Росстат.
Чтобы определить связь, мы рассчитали коэффициент корреляции между интересующими нас величинами. Не будем подробно останавливаться на описании расчете, тем более в Excel и гугл-таблицах есть формула. Остановимся на самом смысле.
Коэффициент корреляции - это статистический показатель зависимости двух случайных величин. Он может принимать значения от «-1» до «+1». При этом, значение «-1» будет говорить об обратной корреляции между величинами, «0» — о нулевой корреляции, а «+1» — о полной корреляции величин. Чем ближе значение коэффициента корреляции к «+1», тем сильнее связь между двумя случайными величинами.
Ниже представлены описание характера связи между величинами в зависимости от коэффициента корреляции.
Из таблицы с коэффициентами корреляции можно сделать вывод, что наши гипотезы подтвердились. Популярность бренда влияет на конверсию, а уровень жизни — на оба показателя: конверсию и средний чек.
Отсортируем полученные данные по убыванию индекса популярности. Видим, что в регионах, где наш бренд популярен, конверсия заметно выше средней.
Для сравнения данные нескольких регионов, в которых наш бренд знают плохо:
Отсортируем данные по убыванию средней зарплаты. Видим, что в регионах с высокой зарплатой средний чек до 30% выше «бедных» регионов.
Для сравнения данные по регионам с низкими зарплатами
Более конкретно результаты звучали бы примерно так:
Хорошо, теперь мы увидели, что на конверсию влияют внешние факторы, но как извлечь из этого пользу?
Вот пример гипотез, которые можно тестировать по итогу исследования:
О том, как можно использовать результаты исследования для создания оптимальной структуры кампаний и более логичной оптимизации мы расскажем в одном из следующих видео.